Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in Mammalian cells.

نویسندگان

  • Sameer Kalghatgi
  • Catherine S Spina
  • James C Costello
  • Marc Liesa
  • J Ruben Morones-Ramirez
  • Shimyn Slomovic
  • Anthony Molina
  • Orian S Shirihai
  • James J Collins
چکیده

Prolonged antibiotic treatment can lead to detrimental side effects in patients, including ototoxicity, nephrotoxicity, and tendinopathy, yet the mechanisms underlying the effects of antibiotics in mammalian systems remain unclear. It has been suggested that bactericidal antibiotics induce the formation of toxic reactive oxygen species (ROS) in bacteria. We show that clinically relevant doses of bactericidal antibiotics-quinolones, aminoglycosides, and β-lactams-cause mitochondrial dysfunction and ROS overproduction in mammalian cells. We demonstrate that these bactericidal antibiotic-induced effects lead to oxidative damage to DNA, proteins, and membrane lipids. Mice treated with bactericidal antibiotics exhibited elevated oxidative stress markers in the blood, oxidative tissue damage, and up-regulated expression of key genes involved in antioxidant defense mechanisms, which points to the potential physiological relevance of these antibiotic effects. The deleterious effects of bactericidal antibiotics were alleviated in cell culture and in mice by the administration of the antioxidant N-acetyl-l-cysteine or prevented by preferential use of bacteriostatic antibiotics. This work highlights the role of antibiotics in the production of oxidative tissue damage in mammalian cells and presents strategies to mitigate or prevent the resulting damage, with the goal of improving the safety of antibiotic treatment in people.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the Toxicity Effects of Silk Fibroin on Isolated Fibroblast and Huvec Cells

Emerging line research showed that silk nanoparticles (NPs) have toxicity on the fibroblastand Huvec cells without any toxicity recognized mechanisms. Recently, it suggested peripheralarterial disease confounds almost eight million Americans. Also, due to the main effect offibroblast in a production of extracellular matrix (ECM), adhesive molecules, glycoproteinsand various cytokines, it decide...

متن کامل

Evaluation of the Toxicity Effects of Silk Fibroin on Isolated Fibroblast and Huvec Cells

Emerging line research showed that silk nanoparticles (NPs) have toxicity on the fibroblastand Huvec cells without any toxicity recognized mechanisms. Recently, it suggested peripheralarterial disease confounds almost eight million Americans. Also, due to the main effect offibroblast in a production of extracellular matrix (ECM), adhesive molecules, glycoproteinsand various cytokines, it decide...

متن کامل

Curcumin Ameliorates Sodium Valproate Induced Neurotoxicity through Suppressing Oxidative Stress and Preventing Mitochondrial Impairments

Background and purpose: Curcumin is a natural polyphenolic compound in turmeric (Curcuma longa). Curcumin has potent free radical scavenger and antioxidant properties that could significantly reduce oxidative damage. Oxidative stress and mitochondrial dysfunction contribute to valproate sodium induced tissue damage. This study investigated the protective effects of curcumin against valproate so...

متن کامل

Gemfibrozil protect PC12 cells through modulation of Estradiol receptors against oxidative stress

Introduction: Neurodegenerative diseases are progressive disorders that could impair neuronal functions and structures. Oxidative stress and mitochondrial dysfunction are involved in the etiology of neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease and etc. Gemfibrozil is used as a therapeutic drug for hyperlipidemia. It has been shown that gemfibrozil is n...

متن کامل

اثرات محافظتی رسوراترول در برابر اختلال عملکرد میتوکندریایی ناشی از پاراکوات

Background and purpose: Resveratrol (RSV) is a naturally existing polyphenolic compound abundantly found in grapes and several plants. It has potent free radical scavenger and antioxidative properties with significant effects in reducing oxidative damage. Oxidative stress and mitochondrial dysfunction contribute to PQ induced tissue damage. In this study, the protective effect of RSV was invest...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science translational medicine

دوره 5 192  شماره 

صفحات  -

تاریخ انتشار 2013